Basic Oxygen Furnace

Büşra Tanyeri Seren Şenol Erdem Uygur Oğulcan Kuru Tolga Karaarslan Aykut Aytekin Öztürk Semih Gürsoy Yılmaz Tezgel

What is the BOF?

 Basic Oxygen Furnace (BOF) is a steel making furnace, in which molten pig iron and steel scrap convert into steel due to oxidizing action of oxygen blown into the melt under a basic slag.

28.4.2015

28.4.2015

- Primary steelmaking
- Known as Linz-Donawitz-Verfahren steelmaking

History

- In 1856, Henry Bessemer patented a steelmaking process involving oxygen blowing for decarburizing molten iron.
- For nearly a hundred years commercial quantities of oxygen were not available at all or were too expensive, and the invention remained unused

History

- The process was developed in 1948 by Robert Durrer in Switzerland.
- by commercialized in 1952-1953 by Austrian VOEST and ÖAMG is an international steel based technology and capital goods group based in Linz.

What about energy?

How does BOF work? Charging hot metal Slagging 28.4.2015

How does BOF work?

1-Charging Hot Metal

Hot metal is melted pig iron in a furnace.

28.4.2015

10

"heating" begins when the BOF vessel is tilted about 45 degrees towards the charging aisle and scrap charge (about 25 to 30% of the heat weight) is dumped from a charging box into the mouth of the cylindrical BOF.

Then the vessel is rotated back to the vertical position and lime/dolomite fluxes are dropped onto the charge from overhead bins while the lance is lowered to a few feet above the bottom of the vessel.

The lance is water-cooled with a multi-hole copper tip. Through this lance, oxygen of greater than 99.5% purity is blown into the mix. If the oxygen is lower in purity, nitrogen levels at tap become unacceptable.

Lining Protection Techniques:

28.4.2015

- Avoid the most aggressive slag
- Protective slag coating
- Local repairs

3–Tapping and Additions

Additions

Tapping

> After blowing, purified steel is poured into ladles

C Mn Si P 0.3-0.9% 0.001 0.01 0.005

Slagging

- After tapping, slag remains in the BOF vessel
- > The slag is poured into slag pots

What is the current situation in Turkey today ?

28.4.2015

Element	Current		Min	Hax	
C ¹	0.00986	0		0.0000	
5"	0.00008	0		0.2300	
No*	0.37598	0		1.1000	
P	0.00189	0		0.0080	
5"	0.02273	0		0.0300	
Cr.	0.02051	0		0.0600	
A*					
8					
N	0.03111	0		0.0500	
Nb	0.00008	0		0.0180	
1	0.00117	0		0.0100	
v	0.00039	0		0.0100	
No	0.01089	0		0.0100	
Ca					
N		0		0.0190	
B.					
04	0.00468				

Settings summary								
User Level	Raw Material	Usit cost	Mass	Cost	Composition	1		
University Student Steel Grade	Hot metal	\$185.001	2001	\$ 37000	Element	Result	Min	Max
Linepipe Steel	LightScrap	50.1980	10360 kg	50	0"	4.190	0	0.08
Hot metal temperature	Heavy Scrap	\$0.15kg	5000 kg	50	9r	0.372	0	0.23
1300°C Stirring gas flow rate	Iron Ore	\$0.099kg	10000 80	50	Mer.	0.473	0	3.1
0.1 Nmfimin/torme	Line	\$0.09kg	5000 kg	50	p	0.075	0	0.008
	Dolomite	\$0.09kg	10050 kg	50	S.	0.020	0	0.03
	Total	revery	249	41775	Cr	0.018	0	0.06
	Cost per metric			194	Mo	0.010	0	0.01
	cost per mean.	ionite		194	N	0.028	0	0.05
					Cu	0.001	0	0.06
					N ²	0.000	0	0.018
					ND	0.000	0	0.018
					ъ	0.001	0	0.01

steeluniversity

🖬 Set	ings summary				
Cos	t breakdown				
	1			Target	
	Total time	041350	0	1H:300	
	Tap temperature	1655 °C	0	1655-1685 °C	
	Final steel composition	A	0		
	Final stag composition	A			
	Hot metal	\$37000			
	Hot metal pre-treatment	\$0			
	Additions	\$4775			
	Other consumables	\$1543			
	Total Cost	\$43418 (\$226.43/t)			

<image>

Second Trial:

Raw Material	Unit cost	Mess	Cost	0	Target st	eel grade	ić.		
Hot metal	\$185.001		\$ 37003		Linepipe	Steel			
					Element	Result		88e.	в
Light Scrap	50.19kg	5000	\$ 950		С"	4.370	00	0	0.0
Heavy Scrap	\$0.15kg	1000 🔨	\$ 150		S/	0.388	00	0	0.2
Iron Ore	50.09kg	2000	5 170		Me*	0.489	0	0	1.1
					Ρ	0.078	00	0	0.0
Lime.	\$0.09kg	15000	\$ 1275		S*	0.020	0	0	0.0
Dolomite	\$0.09kg	4000 🚫	\$ 340		a	0.008	0	0	0.0
Total		227	39685		Mo	0.004	0	0	0.0
Cost per metric t	onte		194		ы	0.012	0	0	0.0
			8 Case		Cu	0.001	0	0	00
					N	0.000	0	0	0.0
					No	0.000	0	0	0.0
					n	0.000	0		0.0

Element	Current		Me	Max	
C'	0.00975	0		0.0000	
S*	0.00374	0		0.2300	
No*	0.38439	0		1.1000	
P	0.00112	0		0.0080	
5.	0.02221	0		0.0300	
0'	0.00866	0		0.0600	
R					
8					
N	0.01331	0		0.0500	
Nb	0.00003	0		0.0180	
n	0.00050	0		0.0100	
ν.	0.00017	0		0.0100	
Mo	0.00459	0		0.0100	
Ca					
87		0		0.0190	
R					

User Level	Rew Material	Unit cost	Mass	Cost	Composition	1		
University Student Steel Grade	Hot metal	\$185.001	2001	\$ 37000	Element	Result	Min	Hax
Linepipe Steel	Light Scrap	\$0.19Rg	5000 kg	50	C"	4.370	0	0.08
Hot metal temperature	Heav Scrap	\$0.15kg	1000 kg	50	S#	0.388	0	0.23
1300°C Stirring gas flow rate	Iron Ore	50.09843	2000 kg	50	101	0.489	0	1.1
0.1 Nerfinin/torme	Une	\$0.09kg	15000 kg	50	p	0.078	0	0.008
	Dolomite	\$0.09kg	4000 kg	\$0	S.	0.020	0	0.03
	Total	Versing	227	39885	Cr	0.008	0	0.06
	Cost per metric			194	No	0.004	0	0.01
	Cost per metric	ionite		194	м	0.012	0	0.05
					Cu	0.001	0	0.06
					N	0.000	0	0.018
					ND	0.000	0	0.018
					'n	0.000	0	0.01

Final slag	g composit	ion								
Oxide:	A1203	CaO	Cr203	FeO	MgO	MeO	5102	P	s	
Contest:	0.0	412	0.0	49.9	44	0.6	3.6	0.1933	0.0184	
	1040 101			WEDN			IT DAY			
	Tap torn	iperature		1663.1		0	1655-1685 °C			
	Final str	eel composition				0				
	Final sk	ng composition								
	But met	al		\$3700						
	Hot met	ial pre-treatment		\$0						
	Addition	15		\$2985						
	Other o	onsumables		\$1535						
	Total Co	est.		\$4142 (\$227.						

Final Trial

Hot Metal Temperature = 1300 Celcius, Bottom Stirring Gas Flow Rate= 0.1 (Nitrogen)

Dement	Carrent		Ma	Hax	
C.	0.01952	0		0.0920	
9 7	0.00485	0		0.2300	
Ner*	0.39027	0		1.1000	
P	0.00023	0		0.0080	
5"	0.02114	0		0.0300	
α	0.01773	0		0.0600	
R ²					
8					
N	0.02725	0		0.0500	
ND	0.00007	0		0.0190	
1	0.00102	0		0.0100	
v	0.00034	0		0.0100	
No	0.00942	0		0.9100	
Ca					
N ²		0		0.0180	
H"					

Settings summary								
User Level	Rew Material	Unit cost	Hass	Cost	Composition			
University Student Steel Grade	Hot metal	\$185.004	2901	\$ 37000	Element	Result	Min	Max
Linepipe Steel	LightScrap	50.1980	11000 kg	50	C"	4,212	0	0.08
Hot metal temperature	Heav Scrap	\$0.15kg	7000 kg	50	S/	0.374	0	0.23
1300°C Stirring gas flow rate	Iron Ore	\$0.09%g	9000 kg	50	ter.	0.475	0	3.1
0.1 Nnfilmin/torme	Line	\$0.09kg	4800 kg	50	P	0.076	0	0.008
	Dolomite	\$0.09kg	7900 kg	50	S.	0.020	0	0.03
	Total	tering.	300	53085	0r	0.017	0	0.06
	Cost per metric	treas		191	Mo	0.009	0	0.01
	Con pri ment.	in the second se			Nê	0.026	0	0.05
					Cu	0.001	0	0.06
					N	0.000	0	0.018
					ND	0.000	0	0.018
					ъ	0.001	0	0.01

steeluniversity

FR 0.40	tings summary				
Cos	it breakdown				
				Target	
	Total time	041310	0	1H 30M	
	Tap temperature	1674 °C	0	1655-1685 °C	
	Final steel composition	A	0		
	Final slag composition	A			
	Hot metal	\$48100			
	Hot metal pre-treatment	\$0			
	Additions	\$4984.5			
	Other consumables	\$1899			
	Total Cost	\$54983.5 (\$208.594)			

Oxide:	g composi	CaO	Cr203	FeO	MgO	MaO	5102	р	5	
Contest:	0.0	36.4	0.0	45.3	12.2	0.9	5.0	0.2906	0.0482	
	10481	RF		(H) I		V	84C308		_	
	Tap ter	sperature		1674.1		0	1655-1685 °C			
	Final st	sel compositur				0				
	Final si	ag composition			9					
	Hat me	tal		\$4810						
	Hot me	tal pre-treatment		\$0						
	Additio	05		\$484	5					
	Other o	consumables		51899						
	Total C	est.		\$5488 (\$209.						

References

- http://www.heattreatconsortium.com/metalsadvi sor/iron_and_steel/process_descriptions/raw_me tals_preparation/steelmaking/basic_oxygen_furn ace/basic_oxygen_furnace_energy_consumption. htm
- https://steeluniversity.lms.crossknowledge.com/ data/content/Final/1264/3A8ACA74-B2D5-28CC-80F6-
- OFBEFB29E683/index.html#gotoExercise=1122
- https://www.steel.org/Making%20Steel/How%20I ts%20Made/Processes/Processes%20Info/The%20 Basic%20Oxygen%20Steelmaking%20Process.aspx

28.4.2015

46