Index

- Definition & History of EAF
- Electrical System of EAF
- Furnace Operations
- Simulation
- Conclusion

What is an EAF?

- AC or DC powered furnace which uses graphite electrodes to melt scrap iron and steel.
A Brief History

- The Heroult company in France introduced the EAF in 1899.
- In the 1950s EAFs were small and usually located in a back corner of the melt shop.

From 1965 to 1969 several primary EAF fume control systems were installed in the United States.
- The hot gases at the fourth hole caused considerable problems in the duct work. This problem with the original designs was later solved by using water-cooled ducts to reduce the temperature of the gases.

A Brief History

What Happens In EAF?

- Recycled steel scrap is melted and converted into high-quality steel by using high-power electric arcs.
- Almost any type of metal can be used as the raw material in EAF.

EAF in Steel Production

- Almost a third of the world’s steel production today is done by EAF.
Economical Aspects

- The recovery of metal scraps benefits both the natural resources of the world and the economical growth.
- Moreover, using recycled products enables EAF to produce a variety of materials.

Electrical Power System

The modern steel plant receives low current, high voltage power from the generators of the electrical utility company. The purpose of the steel plant primary transformer is to step-down this voltage. The transformer is commonly rated between 150-250 MVA and is a high voltage transformer. It is used to transform the incoming high voltage power to a lower voltage, typically 12.5 kV. This transformer is then connected to a secondary transformer, which steps down the voltage to the 620-750 V range. Electrical current is then transmitted to the EAF through a series of transformers designed specifically for this purpose.

Other electrical systems around the EAF are the delta closure, the power cables, the current conduction arm, and the electrode holders. The power cables provide a connection between the delta closure and the current conduction arm. They are typically made of copper wires, with a rubber water jacket around the outside for water-cooling the cables. The power cable is connected with the current conducting arm, usually made of copper clad steel or aluminum alloys.

- There are 3 phases used and 3 electrodes will be needed. Each of these 3 phases is connected to one of the graphite electrodes.

- Why graphite electrodes?
 - They are durable at high temperatures and they have a good electrical conductivity. When the electrode is near the scrap, an ore is created and an electrical circuit is formed. To melt this scrap, there will be energy need and these arc provide the heat energy.

- It is important to note that the variance in arc length is highly dependent on the EAF transformer tap voltage. Lower voltage systems (~500v) will display less variance in absolute terms than higher voltage systems (~1000v).
Movement of Electrodes

- Vertical movement of the electrodes is obtained by adjusting the electrode arm positions.
- This phenomena controlled by the feedback from the electrical system.
- By controlling the electrical performance, we reach the predefined set point at an optimum power input.
- Electrode have an upper limit in maximum current allowed and this changes the secondary voltage parameters. The secondary voltage and arc of the length are directly proportional to each other.

Furnace Operations

- Furnace charging
- Melting
- Refining
- De-slagging
- Tapping
- Furnace turn-around

Furnace Charging

- Before the melting and heating operations start, the first step is charging into the scrap. The roof and electrodes are raised and are swung to the side of the furnace allow the scrap charging to the bottom. When bucket of the furnace is full of the scrap, the roof and electrodes are lowered to strike an arc on the scrap.
- At this time electrical power is switched on and the furnace is transforming electricity to the heat the scraps. When the scraps start to melt, more volume is made available inside the furnace.
- At this time the electricity is switched off and another basket will be loaded in to the furnace. The power is on again and melting of the second basket starts.

Melting

- Melting is accomplished by supplying chemical or electrical energy to the furnace interior.
- The graphite electrodes are moved downwards.
- Electrical energy is supplied by graphite electrodes.
- Chemical energy is supplied by lanced oxygen directly to aluminum, silicon, manganese, phosphorus, carbon and iron. All of the reactions with oxygen are exothermic.
- After first charge has been melted; second charge is added into furnace.
Refining

- Refining operations in the electric arc furnace have traditionally involved the removal of phosphorus, sulfur, aluminum, silicon, manganese and carbon from the steel.
- Refining reactions are all dependent on the availability of oxygen.
- Higher level of P and S in the furnace charge than what is required in the steel as per the specification, are to be removed.
- P retention in the slag depends on the bath temperature, slag basicity and FeO levels in the slag.
- Removal of S in the EAF is difficult especially in the modern practice where the oxidation level of the bath is quite high.
- At the end of refining, bath temperature measurement and bath sample are taken. If the temperature is too low, power can be applied to the bath. Low temperature is not a big issue in modern steel melting shops where temperature adjustment is carried out in the ladle furnace.

De-Slagging

- Some of the undesirable materials within the bath are oxidized and enter the slag phase. De-slagging operations are carried out to remove these impurities from the furnace.
- It is advantageous to remove as much phosphorus into the slag as early in the heat as possible.
- During slag foaming operations, carbon may be injected into the slag where it will reduce FeO to metallic iron and in the process produce carbon monoxide which helps foam the slag. If the high phosphorus slag has not been removed prior to this operation, phosphorus reversion will occur. During slag foaming, slag may overflow the sill level in the EAF and flow out of the slag door.

Component	Source	Composition Range
CaO | Charged | 40 – 60 %
SiO₂ | Oxidation product | 5 – 15 %
FeO | Oxidation product | 10 – 30 %
MgO | Charged as dolomite | 3 – 8 %
CaF₂ | Charged, slag fluidizer | -
MnO | Oxidation product | 2 – 5 %
S | Absorbed from steel | -
P | Oxidation product | -

Tapping

- Once the desired steel composition and temperature are achieved in the furnace, the tap-hole is opened, the furnace is tilted, and the steel pours into a ladle for transfer to the next batch operation.
- De-oxidizers may be added to the steel to lower the oxygen content prior to further processing.
- This is commonly referred to as "blocking the heat" or "killing the steel".
Tapping

- Common de-oxidizers \Rightarrow Al or Si (in the form of ferrosilicon or silicomanganese)

- Most carbon steel operations aim for minimal slag carry-over.

- For ladle furnace operations, a calcium aluminate slag is a good choice for sulfur control.

Tapping

- Slag forming compounds \Rightarrow ladle at tap, a slag cover is formed prior to transfer to the ladle furnace.

- If the slag cover is insufficient \Rightarrow more slag materials may be added.

Furnace Turn-around

- What is the furnace turn-around?
 - Period following completion of tapping until the furnace is recharged for the next heat.

- How it works?
 - Electrodes and roof are raised and the furnace lining is inspected for refractory damage.

Furnace Turn-around

- In most modern furnaces, the increased use of water-cooled panels has reduced the amount of patching or “fettling” required between heats.

- Furnace turn-around time is generally the largest dead time period in the tap-to-tap cycle.
1-Engineering Steel is chosen.
2-Target composition →
What did we change?

Cheap materials are used instead of expensive ones like "plate and structural".

After 9 trials, the minimum cost was found as $217/t
Melting & Slagging

- Electrodes should not be broken so speed is important.
- Sample is taken for control before slagging.
- For slagging, air (30 kg/min) and Cl (50 Nm³/min) is blown.

Additives

- We need C and Mn
- To reach target composition, we added 10 kg Ferromanganese as additives

Final Composition

Additives

- We need C and Mn
- To reach target composition, we added 10 kg Ferromanganese as additives
THANK YOU